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COMMENT 

The adiabatic susceptibility and specific heat at constant 
magnetisation of the Ising model 

D D Betts 
Theoretical Physics Institute and Department of Physics, University of Alberta, Edmonton, 
Alberta, Canada T6G 251 

Received 28 February 1979 

Abstract. Low-temperature series expansions for the adiabatic susceptibility of the spin-4 
king model in three dimensions are generated. A simple ratio analysis of the susceptibility 
coefficients on low-coordination lattices leads to the hypothesis that in the critical region 
CH/CM = x d x s = 4 .  

The nature of the critical behaviour of the specific heat at constant magnetisation in zero 
field has received little attention. As pointed out in an earlier study by Baker and Gaunt 
(1967), the well-known thermodynamic relation in standard notation 

C H  - C M  = T(akf/aT)k(aH/akf)T (1) 
implies that C M  d C H .  For T > Tc and H = 0 equation (1) implies that CM = CH for all 
models. In mean field theory c M / c H  = 0 for T < Tc. In the two-dimensional spin-$ 
Ising model (Baker and Gaunt 1967) 

C M ~ C H ~ ~ + E / ~ ~ ( ~ - T / T ~ ) ,  T+T& (2) 
where the slightly lattice-dependent amplitude E = 1-8. 

For the three-dimensional Ising model one might expect the asymptotic ratio of 
CM/CH to lie somewhere between the mean field and two-dimensional results. From 
the then available low-temperature series expansions Baker and Gaunt derived series 
for C M / C H  and concluded that c&f/CH = 1 also for the three-dimensional Ising model. 

Because of the well-known thermodynamic relation 

CMICH = X S I X T ,  (3 ) 
where xs and xT are the adiabatic and isothermal susceptibilities, one may equally well 
study susceptibility series. For the specific heat at constant field, the spontaneous 
magnetisation and the initial isothermal susceptibility of the spin-$ Ising model 
low-temperature expansions in U of very considerable length are now available on five 
regular cubic lattices. The lengths of the series are listed in table 1. For the first four 
lattices the data were derived by Sykes er a1 (1965, 1973a) and for the hydrogen 
peroxide lattice by Betts er al (1974). 

Analysis of the spontaneous magnetisation series was quite successful; the initial 
isothermal susceptibility series proved difficult to analyse, and the analysis of the 
constant field specific heat series was almost completely unsuccessful (Gaunt and Sykes 
1973, Betts and Chan 1974). 
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Table 1. Maximum degree of published low-temperature series for the Ising model. 

Lattice 
Hydrogen 

FCC BCC sc  Diamond peroxide 

Coordination number 12 8 6 4 3 
Maximum degree 40 28 20 15 17 

We have derived series for xs = Z,, c:un and CM/NkB (log u ) ~  = E,, a:un on all five 
three-dimensional lattices. We have assumed power-law singularities of the standard 
form 

xs i= C; (1 - T/ Tc)-”, H = 0 ,  TCTC (4) 
and 

CM 5 Ah( 1 - T/ T c ) - . ~ .  

From (1) and (3) ~ $ 4 7 ’  and ahsa’. The series for CM, like those for CH, are 
completely intractable to standard ratio and Pad6 approximant methods of analysis. We 
have analysed the series for xs by the standard ratio and Pad6 approximant methods. 
They are better behaved than the specific heat series, but somewhat worse behaved than 
the corresponding series for xT. In summary we have not learned much from direct 
analysis of the series and thus we omit any details for CM and XS. 

For the sc, BCC and FCC lattices the coefficients in the low-temperature series for all 
thermodynamic properties of the Ising model are irregular in sign; for the diamond and 
hydrogen peroxide lattices, however, all coefficients are of the same sign. The 
coefficients c: for the latter two lattices are listed in table 2. In figure 1 we have plotted 

Table 2. Coefficients of the low-temperature expansion of the reduced adiabatic suscep- 
tibility, xs = kET(d2 IC . l /dHZ)s / (gCLE) ’N ,  for the spin-$ Ising model. 

Lattice 
Degree 
n Diamond Hydrogen peroxide 

0 0 0 
1 0 0 
2 0 0 
3 2 0 
4 15 2.666666667 . . . 
5 78.5 14,22222222.. . 
6 429.75 58.9629629.. . 
7 2188.625 215.5061728.. . 
8 11322.9375 732.6748971 . . . 
9 54058.40625 2380.159122.. . 

10 258711.6094.. . 7794.977595.. . 
11 1224155.414.. . 26259.50922.. . 
12 5726839.121.. . 90006.40187.. . 
13 26559135.68.. . 307104.4959.. . 
14 122583321.0.. . 1029648,168.. . 
15 563722867.8.. . 3390131.321.. . 
16 11041033m. .  . 
17 35870974.20 ~. . 
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Figure 1. Ratios of coefficients cT/4c: of corresponding powers in the low-temperature 
expansions of the isothermal susceptibility xT and adiabatic susceptibility xS of the Ising 
model on the diamond lattice (squares) and hydrogen peroxide lattice (circles) against l / n .  

for the latter two lattices the ratio of coefficients clfi4c: for corresponding powers of the 
independent variable in the series for xT and xs. (For the hydrogen peroxide lattice the 
independent variable is z = exp(-2J/kT) and for the diamond lattice is U = z2.) 

The diamond lattice ratios are very linear in l / n .  By extrapolation we estimate 
c~/c~==4.00zk0.05 as n + a .  The ratios for the hydrogen peroxide lattice have a 
pronounced oscillation which seems to be damping out for higher n. For the hydrogen 
peroxide lattice we estimate that cz /c :  =4.0*0.5. There is no clear evidence for q 
dependence of cF/c:. 

To test the above method we have also computed the adiabatic susceptibility of the 
king model on the honeycomb lattice using the basic data of Sykes er a1 (19736).  For 
this two-dimensional lattice we expect from (2) and ( 3 )  that c, ' /c:=l  as n + a .  
However, because of expected logarithmic corrections this limit may be indicated 
numerically only by rather long series. Like the ratios for the hydrogen peroxide lattice, 
c,'/c: for the honeycomb lattice show oscillations. On the basis of the available data we 
estimate that c,'/c: = 1.4 f 0.4,  which is not inconsistent with the exact asymptotic limit 
of unity. 

The thermodynamic relation ( 1 )  admits of three separate cases of critical behaviour. 
(a) The first and third terms diverge more strongly than the second. The Rushbrooke 
(1963) inequality becomes the scaling equality 

a f + 2 P  + y f  = 2, ( 6 a )  

and the inequality 

Y ' > Y  
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holds. (6) The first and second terms diverge more strongly than the third, so that the 
Rushbrooke inequality becomes 

a ’+2P + y ’ >  2 ,  (7a)  

y ’ =  r[F (76) 

is valid. (c) All three terms diverge equally strongly. Then both equalities (6a) and (76) 
hold. Case (c )  holds for the two-dimensional Ising model and, it now seems, also for the 
three-dimensional Ising model. 

On the basis of the above evidence we conjecture further that for the three- 
dimensional S = $ Ising model 

and the equality 

X S I X  = C M I C H  = i. (8) 
More sophisticated analysis of the series, particularly for the higher-q lattices, could 
either strengthen or disprove this conjecture. 

I would like to thank Professor John Stephenson for a helpful discussion. Dr R 
Gourishankar provided assistance with the numerical calculations. 

Note added in proof. A D Bruce (1979, private communication) has just shown, on  the basis of earlier 
renormalisation group investigations by Aharony and Hohenberg (1976), that X S / X T  approaches a constant 
in the critical region within each universality class. Bruce has further shown that this result is particularly 
significant for the interpretation of experiments on ferroelectrics. I am grateful to D r  Bruce for informing me 
of these results prior to their publication. 
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